

SESSION INITIATION PROTOCOL (SIP) OVERVIEW

T-110.5150 APPLICATIONS AND SERVICES IN INTERNET OCTOBER 4^{TH} , 2011

JOUNI MÄENPÄÄ MULTIMEDIA TECHNOLOGIES, COMMUNICATION SERVICES NOMADICLAB, ERICSSON RESEARCH FINLAND

AGENDA

- > SIP introduction, history and functionality
- > Key concepts of SIP
- SIP addresses
- > SIP messages
- SIP registrations
- SIP routing
- The Session Description Protocol (SDP)
- > Extending SIP

SIP GENERAL OVERVIEW

- Session Initiation Protocol (SIP)
 - Application-level
 - End-to-end
 - Client-server
 - Extensible
 - Text based
- Designed by Internet Engineering Task Force (IETF)
- Design base: HTTP and SMTP
- Mainly used to
 - Establish multimedia sessions (e.g., VoIP)
 - Modify multimedia sessions
 - Terminate multimedia sessions
- > SIP messages are either requests or responses
 - Carry zero or more "bodies".
 - Session Description Protocol (SDP) is the common body
- > Runs on any transport protocol (UDP, TCP, TLS, SCTP)

HISTORY OF SIP

- Specified in the Internet Engineering Task Force (IETF)
- > February 1996: Session *Invitation* Protocol (SIPv1)
 - SIPv1 used Session Description Protocol (SDP)
 - Text-based
 - UDP-based
- > February 1996: Simple Conference Invitation Protocol (SCIP)
 - New format for session descriptions
 - Based on HTTP
 - TCP-based
- March 1996: Presentations at the 35th IETF meeting
- December 1996: Session *Initiation* Protocol (SIPv2)
 - Merged SIPv1 and SCIP
 - Based on HTTP
 - UDP and TCP
 - SDP
- December 1997: decision to split SIP into a base spec and extensions
- > February 1999: proposed standard level
 - Published as RFC 2543
- June 2002: RFC 3261 was published
- 2011: Work continues in the SIPCORE and DISPATCH WGs

OVERVIEW OF SIP FUNCTIONALITY

- Functionality
 - User location (not geographical location)
 - End system used for communication
 - User availability
 - > Willingness of the other party to engage in communications
 - User capabilities
 - Media parameters
 - Session set-up
 - Establishment of session parameters at both called and calling party
 - Session management
 - > Transfer and termination of sessions, modifying session parameters
- > SIP does not provide services
 - But it enables the system to provide services
 - It has been demonstrated that it is easy to provide services with SIP

SIP LOGICAL ENTITIES

- User Agent (UA): An endpoint
 - User Agent Client (UAC): sends requests, receives responses
 - User Agent Server (UAS): receives requests, sends responses
- Proxy server: A network host that proxies requests and responses, i.e., acts as a UAC and as a UAS.
- Registrar: A special UAS that accepts only registrations
- Redirect server: a UAS that redirects request to other servers.
- › Back-to-back User Agent (B2BUA): UAS linked to a UAC
 - Acts as a UAS and as a UAC linked by some application logic

STATELESS AND STATEFUL PROXIES

- There are several types of SIP proxies, depending on the state they keep
- Stateless proxy
 - Does not keep any state when forwarding requests and responses
 - A simple message forwarder

Transaction stateful proxy

- Stores state during the duration of the transaction
- Maintains a server transaction and a client transaction

Call stateful proxy

- Stores all the state pertaining to a session (e.g., from INVITE to BYE)
- A call stateful proxy is always a transaction stateful proxy, but not the other way round

SIP METHODS

-) INVITE
-) BYE
-) ACK
- CANCEL
- REGISTER
- OPTIONS
- SUBSCRIBE
- NOTIFY
- PUBLISH
- MESSAGE
- REFER
- PRACK
- UPDATE
-) INFO

SIP ADDRESSES

- > SIP uses Uniform Resource Identifiers (URIs)
 - SIP URIs and SIPS URIs
 - Others (such as TEL URL) also commonly supported.
- Examples
 - sip:john.doe@example.com
 - sips:john.doe@example.com
 - tel:+358-9-299-3283
 - sip:proxy.atlanta.com:5060
 - sip:another-proxy.biloxi.com;transport=UDP
- > SIP and SIPS URIS
 - Must include a host name
 - May include username, port numbers, parameters
 - sip:user:password@host:port;uri-parameters
- Non SIP/TEL URIs are also valid under certain circumstances: IM, PRES

SIP TRANSACTIONS (1/2)

SIP transaction

- Occurs between a client and a server
- Consists of a request and at least one response
- Comprises all messages from the first request sent up to a final response
- May contain zero or more provisional responses before the last final response
- Three types of transactions
 - Regular transactions: other than INVITE, ACK or CANCEL
 - INVITE-ACK transactions
 - CANCEL transactions

SIP TRANSACTIONS (2/2)

- An INVITE-ACK involves two transactions: an INVITE transaction and an ACK transaction
 - The ACK request confirms the reception of the final response

- A CANCEL transaction cancels a previous transaction
 - Connected to a previous transaction
 - Similar to regular transactions
 - Exception: final response generated by the next SIP hop (proxy) instead of the UAS

SIP DIALOGS

- A dialog is a SIP relationship between two endpoints that persists for some time
- SIP methods that can create a dialog include INVITE, SUBSCRIBE and REFER
 - When a dialog is established, all the subsequent requests within that dialog follow the same path

FUNCTIONAL LAYERS

- SIP is structured as a layered protocol
- Syntax and encoding layer
 - Message parsing
 - Encoding is specified using an augmented Backus-Naur Form grammar (BNF)
 - > E.g. SIP-URI = "sip:" [userinfo] hostport
- Transport layer
 - Defines how
 - a UAC sends requests and receives responses
 - > a UAS receives requests and sends responses
- Transaction layer
 - Handles application layer retransmissions, matching responses to requests, and application-layer timeouts
- Transaction user (TU)
 - Session creation, application-specific processing
 - When a TU wishes to send a request, it creates a client transaction instance and passes it the request along with the destination IP address, port and transport

AN EXAMPLE OF A SIP REQUEST

```
Method
Request
          INVITE sip:John.Doe@example.com SIP/2.0
 Line
               SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd];branch=z9hG4bknayersjon
          Max-Forwards: 70
                                                    Request-URI
          Route: <sip:pcscfl.visitedl.net;lr>, <sip:scscfl.homel.net;lr>
          From: <sip:user1 public1@home1.net>;tag=171828
         To: <sip:John.Doe@example.com>
                                                          Header Field
          Call-ID: cb03a0s09a2sdfqlkj490333
          Cseq: 127 INVITE
          Contact: <sip:[5555::aaa:bbb:ccc:ddd]>
          Content-Type <application/sdp
                                                         Header Field Name
          Content-Length: 248
                                                      Header Field Value
          v=0
          o=- 2987933615 2987933615 IN IP6 5555::aaa:bbb:ccc:ddd
          c=IN IP6 5555::aaa:bbb:ccc:ddd
          t=907165275 0
          m=audio 3458 RTP/AVP 97 96 0 15
          a=rtpmap:97 AMR
          a=fmtp:97 mode-set=0,2,5,7; maxframes=2
          a=rtpmap:96 G726-32/8000
```


AN EXAMPLE OF A SIP RESPONSE

```
SIP Version
Status
          SIP/2.0/200 OK
                                        Reason phrase
Line
          Via: SIP/2.0/UDP [5555::aaa:bbb:ccc:ddd];branch=z9hG4bKnashds7
          Record-Route: <sip:scscf1.homel.net;lr>, <sip:pcscf1.visited1.net;lr>
           From: <sip:user1_public1@home1.net>;tag=171828
           To: <sip:John.Doe@example.com>;tag=314159
     Header
          Call-ID: cb03a0s09a2sdfqlkj490333
                                                  → Status code
           CSeq: 127 INVITE
           Contact: <sip:[5555::eee:fff:aaa:bbb]>
           Content-Type: application/sdp
           Content-Length: 220
           77=
           o=- 2987933615 2987933615 IN IP6 5555::eee:fff:aaa:bbb
           c=IN IP6 5555::eee:fff:aaa:bbb
           t=907165275 0
          m=audio 3458 RTP/AVP 97 0
          a=rtpmap:97 AMR
           a=fmtp:97 mode-set=0,2,5,7; maxframes=2
```


SIP RESPONSES (1/2)

- SIP defines two types of responses
 - Final responses convey the result of the request processing, and are sent reliably
 - Provisional responses provide information on the progress of the request processing, but are not sent reliably in the core protocol (RFC 3261)
- Status codes ranges:
 - 100 199 Provisional (also known as informational responses)
 - Server is performing some further action and does not yet have a definitive response
 - > Example: 180 Ringing UA receiving the INVITE is trying to alert the user
 - 200 299 **Success**
 - Request was successful
 - Example: 200 OK the request has succeeded
 - 300 399 **Redirection**
 - 3xx responses give information about the user's new location or about alternative services that might be available to satisfy the call
 - Example: 302 Moved temporarily retry the request at new address(es) specified in the Contact header

SIP RESPONSES (2/2)

- Status code ranges continued:
 - 400 499 Client error
 - Definitive failure responses from particular server
 - Client should not retry the same request without modification
 - > Example: 401 Unauthorized request requires user authentication
 - 500 599 **Server error**
 - Server itself is the cause of the error.
 - Example: 500 Internal server error server encountered an unexpected condition
 - 600 699 Global failure
 - Server has definitive information about a particular user
 - Example: 600 Busy everywhere the callee is busy and knows that no other end system will be able to accept the call

SIP ROUTING AND DNS SYSTEM

- SIP clients use DNS to route requests and find the next hop to route the request
 - By looking into a NAPTR (Naming Authority Pointer) record in DNS
 - By looking into a SRV (Services) record in DNS
 - By looking into A (IPv4) or AAAA (IPv6) records in DNS
- Example
 - Assumption: no transport and no port specified in the SIP URI

SIP REGISTRATION

Public user identity sip:bob.doe@biloxi.com is bound to the contact address sip:bob@laptop.biloxi.com **Request-URI** names the domain for which the registration is meant.

To contains the address of record (AoR) whose registration is to be created.

From contains the AoR of the person responsible for the registration.

1 REGISTER sip:biloxi.com SIP/2.0 From: <sip:bob.doe@biloxi.com> To: <sip:bob.doe@biloxi.com> Contact: <sip:bob@laptop.biloxi.com>

(2)SIP/2.0 200 OK

From: <sip:bob.doe@biloxi.com>

To: <sip:bob.doe@biloxi.com>
Contact: <sip: bob@laptop.biloxi.cor

laptop.biloxi.com

SIP server and registrar

- The SIP registration function allows users to upload their current locations for use by proxy servers
 - A REGISTER message associates a user's SIP (or SIPS) URI with the machine into which the user is currently logged
 - The registrar writes this association into a database, from which it can be fetched by a proxy server

ROUTING: SIP SERVER IN PROXY MODE

ROUTING: SIP SERVER IN REDIRECT MODE

FORKING PROXIES

- A proxy server can send an INVITE to a number of locations at the same time
 - This type of parallel search is known as forking
- A proxy can route messages in parallel or in sequence
 - In parallel forking, all locations are attempted simultaneously
 - In sequential forking, the proxy tries different locations one after the other

SESSION DESCRIPTION PROTOCOL (SDP)

- Session Description Protocol (SDP) is the most common format to describe multimedia sessions
 - The details of the session to be established using SIP are not described using SIP, but by using SDP
- SDP is a textual format used to describe the set of
 - Media streams
 - Codecs
 - Other media related parameters supported by either party
- All SIP implementations MUST support SDP
 - Although they can support other bodies
- Used by other protocols than SIP: RTSP, SAP, etc.

SDP EXAMPLE

THE OFFER/ANSWER MODEL

- > SDP was initially developed to support multicast sessions
 - For a unicast session, two addresses are needed
 - Also, the set of codecs needs to be determined by finding an overlap in the set supported by each participant
- SIP provides a two-way session description exchange called the offer/answer model
 - Provides the semantics and operational details defining how SDP is used to describe unicast sessions
- By using the offer/answer model, two entities can make use of SDP to arrive at a common view of a multimedia session between them
 - As a result, they learn the formats they can use and the transport addresses for the session
- > In the model
 - One participant called the offerer generates a session description (the offer), and sends it to the remote user (the answerer)
 - The answerer generates a new session description (the answer) and sends it to the offerer

OFFER/ANSWER MODEL - EXAMPLE 1

Alice sends an offer to Bob:

```
v=0
o=Alice 2790844676 2867892807 IN IP4 192.0.0.1
s=Let's discuss
c=IN IP4 192.0.0.1
t=0 0
m=audio 20000 RTP/AVP 0
a=sendrecv
m=video 20002 RTP/AVP 31
a=sendrecv
```

Bob sends his answer to Alice:

```
v=0
o=Bob 234562566 236376607 IN IP4 192.0.0.2
s=Let's discuss
c=IN IP4 192.0.0.2
t=0 0
m=audio 30000 RTP/AVP 0
a=sendrecv
m=video 30002 RTP/AVP 31
a=sendrecv
```

As a result, Alice and Bob can have a video conversation

OFFER/ANSWER MODEL - EXAMPLE 2

- Multiple codecs are offered, but only one is accepted
- Alice sends an offer to Bob:
 - Alice offers three audio codecs (PCMU, PCMA and iLBC) and H.261 and MPV video

```
v=0
o=alice 2890844526 2890844526 IN IP4 host.atlanta.example.com
s=
c=IN IP4 host.atlanta.example.com
t=0 0
m=audio 49170 RTP/AVP 0 8 97
a=rtpmap:0 PCMU/8000
a=rtpmap:8 PCMA/8000
a=rtpmap:97 iLBC/8000
m=video 51372 RTP/AVP 31 32
a=rtpmap:31 H261/90000
a=rtpmap:32 MPV/90000
```

Bob's select PCMU audio and drops the video component

Bob is willing to send and receive PCMU audio

```
v=0
o=bob 2808844564 2808844564 IN IP4 host.biloxi.example.com
s=
c=IN IP4 host.biloxi.example.com
t=0 0
m=audio 49174 RTP/AVP 0
a=rtpmap:0 PCMU/8000
m=video 0 RTP/AVP 31
a=rtpmap:31 H261/90000

For a rejected stream, at least one media format must be present
```


APPLICATION AREAS OF SIP

- 3G IP Multimedia Subsystem (IMS)
 - Voice over Long Term Evolution (VoLTE)
- > SIMPLE (SIP Instant Messaging and Presence Leveraging Extensions)
- > SIP VoIP/IM clients (some examples)
 - Pidgin (cross-platform)
 - SIP Communicator (cross-platform)
 - KPhone (Linux)
 - Sipdroid (Android)
 - Linphone (PCs, Android, iPhone)
 - Etc.
- > SIP-T (SIP for Telephones)
 - Interconnection of PSTN with IP, VoIP calls between gateways
- IP PBXs (Private Branch Exchange)
- Apple FaceTime (iPhone 4)
- Skype
 - Skype Connect (Skype for SIP)
- RTCWeb (Real-Time Communication between Web browsers)

